Laying Up a Carbon-Fiber Honeycomb Front Impact Attenuator

Impact attenuator

Nose in place while epoxying aluminum hard points into correct positions

SCCA FB rules require a metallic or composite front impact attenuator. Can’t have cars running around on the track with a battering ram on the front… My impact attenuation structure, or crash box, consists of a carbon-fiber and honeycomb sandwich laid up directly on the inside of the fiberglass nose. The carbon fiber varies from four layers at the front to eight layers around the rear attachment points so that it will crush progressively from the front to the back. Cylindrical aluminum inserts are used in the honeycomb as hard mounting points for the wing to the nose and for the nose to the chassis. This area is designed to be strong enough not just to absorb impacts but to allow lifting the front of the car by the front wing.

Advertisements

Carbon-Fiber Honeycomb Vacuum-Bagged Test Panel

Clicky Thingy

Click to watch the video on Youtube.

Inside the nose of the race car will be a carbon-fiber and honeycomb sandwich impact attenuator. So now’s the time to learn how to do vacuum bagging and sandwich layup. Also epoxy. So many new skills…

Fabricating the Chain Guard

Chain Guard

Finished chain guard in place

Formula 1000 rules require a chain guard equivalent to 1/4″ aluminum to contain the chain in case of a break. I had the blank laser cut, then bent it on my tubing bender. After bending, it was sliced in two parts for easier access to the chain and rear sprocket, drilled and tapped for an overlapping tab, cross-drilled for mounting holes, and installed.

Foam-Filling the Driver’s Head Surround

Foaming Action

Two-part polyurethane foam expanding to fill the driver’s head surround.

For proper protection in a crash, the driver’s head surround needs to be filled with foam. I placed an aluminum panel where I wanted the bottom of the foam to be, covered everything with plastic sheeting and poured two-part urethane foam into the cavity. The foam generates considerable pressure as it expands and cures, necessitating many iterations of trimming and fitting. I then sat in the car with the HANS device on, followed by many more iterations of trimming and fitting. Once the foam was cut to shape, I covered it in a single layer of fiberglass and epoxy, then painted it.

Installing the Fire System

Fire Extinguisher

Fire extinguisher with trigger cable and plumbing

The fire extinguisher sits under the driver’s knees with a single outlet tube that goes up to the left side of the driver’s left knee, where it splits at a T intersection. One tube goes up to the dashboard and crosses over to the right side where it ends in a nozzle to the right of the driver’s right hand. The other tube is routed inside the left of the driver’s compartment, through the firewalls, and ends in a nozzle pointed at the headers.  The cable-operated trigger is mounted just to the right of the driver’s right hand. These locations guarantee that when the driver pulls the trigger his hand will not be blocking the driver’s-compartment nozzle.

Fabricating the Halfshaft Collars

Finished Collar

Finished halfshaft collar in place.

I decided there was too much play between the axle halfshafts and the differential extensions, so I made collars with the precise inner diameter and length necessary to remove all play. I was pleased that I could make them so precisely, even on my old beat-up lathe, that they made an almost airtight seal. I’m showing many of the steps below as a reminder of just how many operations go into making even the simplest-looking parts.

Completing the Chain Tensioner, Rear Sprocket & Shift Linkage

Rear Sprocket

Rear Sprocket in place

Completing the car is now just one long series of small projects. Three are shown here.

The original chain tensioner design was not able to take up enough slack in the chain. The chain was either too short or too long, no matter how many links I used or where I put the adjustment. I had to come up with a new design with two idler sprockets instead of one, as you can see in this post. The bearings are special ceramic hybrids to handle the extreme chain speeds seen with a GSX-R1000 engine.

I’ve had a rear sprocket on the car for some time, but that was just for fitting. The lightening holes on that sprocket conflicted with the mounting holes required by the differential, so it wouldn’t have been strong enough. Instead, I ordered a blank sprocket from England and machined the correct mounting holes and center hole, then cut it in half on the bandsaw so that it could be mounted or changed without disassembling the whole rear axle and suspension.

I also built an adapter to go from the auto shift linkage to the transmission gear change lever. I bought a Suzuki GSX-R shift link rod from Ebay, cut off the front, and welded it to a threaded rod. The rod threads into a bushing I made that fits inside the eye of the shift linkage. The sleeve of the shift cable must be held securely, so you can see here the bracket that mounts it to the frame rails.