Building the Front Wing & Mounts

Front Wing

Finished front wing on the car (endplates to be added after setting ride height)

Fabricating a Formula 1000 Race Car Diffuser

Diffuser

Finished diffuser mounted on car

I try to post updates only for completed projects, and since I’ve had several projects in progress it’s been a while since I’ve blogged. The diffuser is finally finished, so here are some pix and a video that explains it all:

 

Shaping the Dashboard

Finished Dashboard

Finished dashboard

I wanted to have a generic surface for mounting various switches and different permutations of gauges and data loggers, so I built a dashboard by shaping it from a flat sheet of aluminum. I thought it would only take a day, but it took a bit longer. Given that this is only my second attempt at metal shaping, the result is surprisingly good and it ways next to nothing. Take a flat sheet of aluminum and start pounding the crap out of it until its the right shape… (I may be oversimplifying a bit here) then weld the corners.

Fabricating the Pedal Cluster

Voila!

Finished pedal cluster

Here’s a big project that spread out over a number of months. I’m aggregated the photos here and attempted to make them tell a coherent story.

The cluster as a whole can be adjusted forward and back for drivers of different heights. The gas pedal is adjustable for foot travel, throttle cable travel and left/right position. The brake pedal height is independently adjustable, and brake bias is adjustable from front to back. The hydraulic clutch pedal is also independently adjustable for height.

Many of the original pieces were laser cut from steel, then bent and welded to form the complex shapes required. Some of the bushings were CNC turned, but most were made by hand. The master cylinders, brake bias adjustment cable, and the nuts and bolts were purchased, with everything else custom made. This includes the brake bias adjustment assembly, which forced me to learn how to cut threads on the lathe. It’s not as easy as it looks. Take a look at the brake bias adjustment bar– it has three sets of threads independently cut on a manual lathe, three diameters, two snap rings and a threaded hole. Good fun! Due to changes in the steering rack mount, the main pedal bracket had to be widened as you can see in the photos.

Computer Rendering

Computer rendering from early 2011

Fabricating the Shifter Assembly & Linkage

Assembled

Assembled shifter mechanism

I looked through a bunch of street car transmission shifter cables, brought a couple of them back to the lab, and decided on one that was the correct length, light, and low friction. Everything else was fabricated…

The car will use a Suzuki GSX-R1000 engine, which has a 6-speed sequential transmission, meaning the shifter only has two movements: shift up, and shift down.

Paneling the Cockpit

 

Cockpit Panels

Fully paneled cockpit

While the sides of the cockpit already have side-intrusion panels on the outside, they will also have a second panel on the inside to prevent the seat foam from extruding between the frame tubes and pushing on the outside panels, something those outside panels aren’t equipped to properly resist. The interior panels also must follow the SCCA rule against stressed skins that requires chassis attachment points to be more than 6 inches apart. Due to their different shape and size, the interior panels have a completely different mounting pattern and can’t share any of the exterior panel mount points. Thus, many more tabs are cut and welded on.

The seat back is formed by the fuel tank and three additional pieces of aluminum, shaped at the sides to provide shoulder support on the front while providing space and access at the back to the fuel pump on one side and the fuel filler on the other. The center section is removable to access the shoulder harness mounting points.

 

Building the Firewall

Test Fit

Test fitting the firewall

The firewall is a continuous, fully welded sheet of steel between the engine compartment and the cockpit. SCCA formula 1000 rules allow it to be a stressed panel, thus the continouous welding. Around the fuel tank it will be a double wall of steel for extra protection against engine explosions, insulated with shredded fiberglass to keep the fuel cool.

Fabricating the Fuel Tank

Fuel Tank

Finished fuel tank. You might want to wear sunglasses.

The fuel tank consists of an FIA FT3 certified fuel cell bladder, custom-made for this project by Aero Tec Laboratories, inside a custom made steel/aluminum container. The bottom and back of the container are made from a single laser-cut and bent sheet of steel, while the sides, front, and top are laser-cut and bent aluminum pieces. It’s carefully designed so the interior is completely smooth with all rivets and fasteners away from the fuel cell. All the rivet holes were laser cut also, meaning there’s only one way to fit it together– the correct way. This did make it very hard to install, however, as tolerances are zero to negative.

Inspecting or replacing the fuel cell bladder should be possible by drilling out all the rivets on the diagonal front panel and removing it. Not something I want to do very often.

Fabricating the Differential Mounts

Finished Diff

Finished differential, differential mounts, and rear sprocket

Thirty-four years ago I designed a car for the SAE collegiate Mini-Baja competition. The differential was inadequately supported in the middle, and although it didn’t break on us, it broke the next year and sidelined the car. I’ve felt guilty ever since, so that’s one mistake I’m determined not to repeat. This one should be adequate…

Later I plan on fabricating some sort of container or plugs to keep the oil in the diff.

Fabricating GSX-R1000 Engine Mounts

Sorry for the long delay since the last blog entry. A lot of water has gone under the bridge since then. But don’t worry, the project has continued, although with some big distractions. I’ll be trying to catch up on my blogging in the next few weeks.

Next up is fabricating the engine mounts for the 2007-8 Suzuki GSX-R1000 motorcycle engine. I surveyed the state of amateur formula-car engine mounts, and decided a lot of them are inadequate. This video got me to thinking: https://www.youtube.com/watch?v=m1j7hmJmSJA as my car should be faster than a Ferrari 458. Some might be skeptical of that speed comparison; if you are, take a look at this comparison of a Porsche 911 Turbo versus a formula 4 car: https://www.youtube.com/watch?v=e8WyvVbVu4k . A formula 1000 car should compare favorably with a formula 4 car. Either way, you lose a lot of torsional rigidity with the large open hole to mount the engine, and I hope to recover much of that with a strong triangulated set of engine mounts.